龙锡恩

发布者:黄跃进发布时间:2022-03-17浏览次数:1768



  博士,副教授/硕士生导师

  电子邮件:xelong@ntu.edu.cn


     学习经历:

     200906-201206 中国科学院生态环境研究中心生态学理学博士(200809-201011 澳大利亚格里菲斯大学环境未来中心访问学习)

     200609-200906中国科学院生态环境研究中心环境科学专业(期间转博士)

     199509-199906 华中农业大学农业环境保护专业农学学士

   

   研究方向:土壤微生物生态学,植物促使菌和土壤污染修复机理


   

    承担课程:

     本科生课程:《环境工程实验》《有机化学》《有机化学实验》;

      研究生课程:《污染控制化学与工程》《环境微生物工程》 


    

科研和教学课题(主持)

       国家级科研项目:

      1.滨海滩涂围垦区稻麦轮作影响深层土壤有机碳组分及其稳定性的微生物机制202401-202712 国家自然科学基金面上项目)

      2.水稻土磷素转化活性及其功能微生物种群对施用生物炭的响应机理201801-202112国家自然科学基金面上项目)

      3.植物-微生物互作过程中肥料氮元素转化的机制(201707-202012 国家重点研发计划子课题)



     省级科研项目:

      垃圾填埋场厌氧甲烷氧化微生物生态效应研究(201401-201612 浙江省自然科学面上基金)



     市厅级科研项目:

      1.滨海盐碱地炭基作物促生菌剂开发研究202305-202505 自然资源部滨海盐碱地生态改良与可持续利用工程技术创新中心开放课题)

 

      2.陆源氮磷输入影响滨海盐沼湿地可溶性有机碳稳定性的关键微生物过程研究202201-202212 自然资源部滨海盐沼湿地生态与资源重点实验室开放基金)

 

      3.如东县滩涂围垦区水稻促生菌生态效应研究(201901-202012南通市社会民生科技计划-面上项目)

      4宁波市垃圾填埋场氧化亚氮释放的生物学机制研究(201212-201412中科院青年基金)



发表论文(近52018-2023

[1] Zhou T, Tang S, Cui J, Zhang Y, Li X, Qiao Q, Long X-E. Biochar amendment reassembles microbial community in a long-term phosphorus fertilization paddy soil[J]. Applied Microbiology and Biotechnology, 2023, 107(19): 6013–6028.

[2] Wang F, Harindintwali J D, Wei K, Shan Y, Mi Z, Costello M J, Grunwald S, Feng Z, Wang F, Guo Y, Wu X, Kumar P, Kästner M, Feng X, Kang S, Liu Z, Fu Y, Zhao W, Ouyang C, Shen J, Wang H, Chang S X, Evans D L, Wang R, Zhu C, Xiang L, Rinklebe J, Du M, Huang L, Bai Z, Li S, Lal R, Elsner M, Wigneron J-P, Florindo F, Jiang X, Shaheen S M, Zhong X, Bol R, Vasques G M, Li X, Pfautsch S, Wang M, He X, Agathokleous E, Du H, Yan H, Kengara F O, Brahushi F, Long X-E, Pereira P, Ok Y S, Rillig M C, Jeppesen E, Barceló D, Yan X, Jiao N, Han B, Schäffer A, Chen J M, Zhu Y, Cheng H, Amelung W, Spötl C, Zhu J, Tiedje J M. Climate change: Strategies for mitigation and adaptation[J]. The Innovation Geoscience, 2023, 1(1): 100015–35.

[3] Wu Y, Lu S, Zhu Y, Zhang Y, Wu M, Long X-E. Microbes in a neutral-alkaline paddy soil react differentially to intact and acid washed biochar[J]. Journal of Soils and Sediments, 2022, 22(12): 3137–3150.

[4] Yan D, Long X-E, Ye L, Zhang G, Hu A, Wang D, Ding S. Effects of salinity on microbial utilization of straw carbon and microbial residues retention in newly reclaimed coastal soil[J]. European Journal of Soil Biology, 2021, 107: 103364.

[5] Huang T, Liu W, Long X-E, Jia Y, Wang X, Chen Y. Different Responses of Soil Bacterial Communities to Nitrogen Addition in Moss Crust[J]. Frontiers in Microbiology, 2021, 12[2023-09-20].

[6] Wan S, Liao X, Zhou T T, Wu Y, Hu A, Yan D, Zhang J, Long X-E. Shift in archaeal community along a soil profile in coastal wheat-maize rotation fields of different reclamation ages[J]. Land Degradation & Development, 2021, 32(15): 4162–4173.

[7] Zhang X, Liao X, Huang L, Shan Q, Hu A, Yan D, Zhang J, Long X-E. Soil profile rather than reclamation time drives the mudflat soil microbial community in the wheat-maize rotation system of Nantong, China[J]. Journal of Soils and Sediments, 2021, 21(4): 1672–1687.

[8] Zhu G, Wang X, Yang T, Su J, Qin Y, Wang S, Gillings M, Wang C, Ju F, Lan B, Liu C, Li H, Long X-E, Wang X, Jetten M S M, Wang Z, Zhu Y-G. Air pollution could drive global dissemination of antibiotic resistance genes[J]. The ISME Journal, 2021, 15(1): 270–281.

[9] Liu J, Gou X, Gunina A, Long X-E, Zhang F, Zhang J. Soil nitrogen pool drives plant tissue traits in alpine treeline ecotones[J]. Forest Ecology and Management, 2020, 477: 118490.

[10]        Liu J, Liu W, Long X-E, Chen Y, Huang T, Huo J, Duan L, Wang X. Effects of nitrogen addition on C:N:P stoichiometry in moss crust-soil continuum in the N-limited Gurbantünggüt Desert, Northwest China[J]. European Journal of Soil Biology, 2020, 98: 103174.

[11]        Long X-E, Yao H. Phosphorus Input Alters the Assembly of Rice (Oryza sativa L.) Root-Associated Communities[J]. Microbial Ecology, 2020, 79(2): 357–366.

[12]        Zhang S, Zhang Z, Xia S, Ding N, Long X, Wang J, Chen M, Ye C, Chen S. Combined genome-centric metagenomics and stable isotope probing unveils the microbial pathways of aerobic methane oxidation coupled to denitrification process under hypoxic conditions[J]. Bioresource Technology, 2020, 318: 124043.

[13]        Wang S, Zhu G, Zhuang L, Li Y, Liu L, Lavik G, Berg M, Liu S, Long X-E, Guo J, Jetten M S M, Kuypers M M M, Li F, Schwark L, Yin C. Anaerobic ammonium oxidation is a major N-sink in aquifer systems around the world[J]. The ISME Journal, 2020, 14(1): 151–163.

[14]        Ding L-J, Cui H-L, Nie S-A, Long X-E, Duan G-L, Zhu Y-G. Microbiomes inhabiting rice roots and rhizosphere[J]. FEMS microbiology ecology, 2019, 95(5): fiz040.

[15]        Wang W, Liu W, Wang S, Wang M, Long X-E, Zhu G. Abundance, contribution, and possible driver of ammonia-oxidizing archaea (AOA) in various types of aquatic ecosystems[J]. Journal of Soils and Sediments, 2019, 19(4): 2114–2125.

[16]        Qiao N, Wang J, Xu X, Shen Y, Long X, Hu Y, Schaefer D, Li S, Wang H, Kuzyakov Y. Priming alters soil carbon dynamics during forest succession[J]. Biology and Fertility of Soils, 2019, 55(4): 339–350.

[17]        Wang M, Wang S, Long X, Zhuang L, Zhao X, Jia Z, Zhu G. High contribution of ammonia-oxidizing archaea (AOA) to ammonia oxidation related to a potential active AOA species in various arable land soils[J]. Journal of Soils and Sediments, 2019, 19(3): 1077–1087.

[18]        Wang T, Li Z, Chen X, Long X-E. Effects of nickel and cobalt on methane production and methanogen abundance and diversity in paddy soil[J]. PeerJ, 2019, 7: e6274.

[19]        Zhao K, Kong W, Wang F, Long X-E, Guo C, Yue L, Yao H, Dong X. Desert and steppe soils exhibit lower autotrophic microbial abundance but higher atmospheric CO2 fixation capacity than meadow soils[J]. Soil Biology and Biochemistry, 2018, 127: 230–238.

[20]        Chen X P, Sun J, Wang Y, Zhang H Y, He C Q, Liu X Y, Bu N S, Long X-E. Temporal and spatial impact of Spartina alterniflora invasion on methanogens community in Chongming Island, China[J]. Journal of Microbiology, 2018, 56(7): 507–515.

[21]        Huang Y, Xiao X, Huang H, Jing J, Zhao H, Wang L, Long X-E. Contrasting beneficial and pathogenic microbial communities across consecutive cropping fields of greenhouse strawberry[J]. Applied Microbiology and Biotechnology, 2018, 102(13): 5717–5729.

[22]        Zhang J, Li M, Jia K, Zheng G, Long X-E. Seasonal variation rather than stand age determines bacterial diversity in the rhizosphere of wolfberry (Lycium barbarum L.) associated with soil degradation[J]. Journal of Soils and Sediments, 2018, 18(4): 1518–1529.

[23]        Long X-E, Yao H, Huang Y, Wei W, Zhu Y-G. Phosphate levels influence the utilisation of rice rhizodeposition carbon and the phosphate-solubilising microbial community in a paddy soil[J]. Soil Biology and Biochemistry, 2018, 118: 103–114.

[24]        Long X-E, Huang Y, Chi H, Li Y, Ahmad N, Yao H. Nitrous oxide flux, ammonia oxidizer and denitrifier abundance and activity across three different landfill cover soils in Ningbo, China[J]. Journal of Cleaner Production, 2018, 170: 288–297.

[25]        Duan R, Long X-E, Tang Y, Wen J, Su S, Bai L, Liu R, Zeng X. Effects of different fertilizer application methods on the community of nitrifiers and denitrifiers in a paddy soil[J]. Journal of Soils and Sediments, 2018, 18(1): 24–38.

 

 获奖

    酸性土壤硝化-反硝化作用的微生态机制 (宁波市科学技术奖3等:排名第3)